BT

T2ETI0D
WN ‘84 AUVHEIT Hogy

i

NASA CONTRACTOR
REPORT

Lemnoy ooewry s RETURN TD
ALOTECMMICAL LIBRARY

TERITIRY
I 2 TR VA

KIRTLAKD AFS, N.r M.

NASA CR-2790

PROBABILISTIC FRACTURE MECHANICS
AND OPTIMUM FRACTURE CONTROL
OF THE SOLID ROCKET MOTOR CASE

OF THE SHUTTLE

S. Hanagud and B. Uppaluri /_,-:.\__

Prepared by SRR
GEORGIA INSTITUTE OF TECHNOLOGY gt
Atlanta, Ga. 30332

Jor George C. Marshall Space Flight Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION <+ WASHINGTON, D. C. « JANUARY 1977



TECH LIBRARY KAFB, NM

L

00&1L37)
1. REPORT NO. - - 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO.
NASA CR-2790 ]
4 TITLE AND SUBTITLE S, REPORT DATE
Probabilistic Fracture Mechanics and Optimum Fracture danuary: 1977
Control of the Solid Rocket Motor Case of the Shuttle 6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S) T B8.PERFORMING ORGANIZATION REPORT #
S. Hanagud and B. Uppaluri E-16-646 (o/ 7
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO.
School of Aerospace Engineering ICVI‘} 98 /¢ ;
Georgia Institute of Technology 1. I;:SR::;(;);”RANT NO-
Atlanta, Georgia 30332 13, TYPE OF REPORV & PERIOD COVERED
12. SPONSORING AGENCY NAME AND ADDRESS Confractor Report
National Aeronautics and Space Administration Final _
Washington, D. C. 20546 14. SPONSORING AGENCY CODE
15, SUPPLEMENTARY NOTES
This work was done under the sponsorship of the Marshall Space Flight Center, Alabama.
16, ABSTRACT
Development of a procedure for the reliability analysis of the solid rocket motor case
of the space shuttle has been described in this report. The analysis is based on probabilistic
fracture mechanics and consideration of a probability distribution for the initial flaw sizes.
The reliability analysis can be used to select design variables, such as the thickness of the
SRM case, projected design life and proof factor, on the basis of minimum expected cost and
specified reliability bounds. Effects of fracture control plans such as the non-destructive
inspections and the material erosion between missions can also be considered in the devel-
oped methodology for selection of design variables. The reliability-based procedure that
has been developed in this report can be easily modified to consider other similar structures
and different fracture control plans.
17. KEY WORDS i8. DISTRIBUTION STATEMENT

STAR Category 39

19.

SECURITY CLASSIF, (of this report) 20. SECURITY CLASSIF. (af this pags) 21. NO. OF PAGES |22, PRICE

Unclassified Unclassified 29 $4.00

* For sale by the National Technical information Service, Springfield, Virginia 22161






TABLE OF CONTENTIS

ABSTRACT

Introduction

Method of Approach

Stress Intensity Factor

Probability of Failure

Numerical Example and the Computer Program
Conclusions and Recommendations

APPENDIX 1

APPENDIX TII

iii

10

14
16

24



Introduction

All structural components of the solid rocket motor case of the space
shuttle are considered to be fracture critical. It is also the present
plan to reuse the solid rocket motor case for a designated nuﬁber of
missions. The expected number of missions and operations such as the
tests on the case between the missions are accounted in the projected
design life of the structure. A fracture control plan is necessary
because fracture critical components are being reused.

In particular, this reéort is concerned with the fracture control of
the membrane of the six cylindrical segments that are considered to be the
most critfical of all structural components of the case. The developed
procedure can, however, be used for all similar structures. During each
mission, significant loads are applied to these six cylindrical segments
during the flight and "slap down" operationsf The applied streéses.from
all other events during the miséion are considered not significant enough
to result in cyclic or time dep;ndent crack growth.— If the test or analysis
indicate the possibility of other critical loading events they can be in-
cluded in the fracture control plan by extending the reported a;alysis.
Before each mission, the cylindrical segments are also subjected to a
proof test. The loads applied during the proof tests can result in sig-
nificant amount of crack growth. As a preventive measure to reduce the
effective depth of cracks, the thickness of the membrane is reduced by a
selected amount between two missions. While the effective depth of crack

is reduced, the operation has the effect of increasing the applied



stresses. This necessitates a larger initial thickness of the membranes
than that would be designed without this particular plan for fracture
control.

Therefore, any design of the membrane of the six cylindrical segments
of the = 1id rocket motor case must arrive at an initial wallthickness 't",
the thickness 'At' that will be decreased between each mission and the
proof load factor 'Kp'. For example, a large value of initial wall thick-
ness results in increased reliability, but results in the need for increased
propellant, increased cost of operation and reduced pay load capability.

On the other hand, a small initial wall thickness increases the probabi-
lity of failure and the resulting loss of the shuttle vehicle and the pay
load. Therefore, there is a need for optimizing the initial wall thick-
ness. Similar arguments can be presented to explain the need for selecting
the other design variables such as 'AL' and 'Kp' by optimizing the desired
objective function of cost and weight.

In general, these design variables depend on the probability distribu-
tion for the initial flaw sizes present in the membrane, applied stresses
during the use of the vehicle, crack growth characteristics of the
material, fracture control plans, specified reliability bounds, weight
and cost considerations. The report describes a reliability;based pro-
cedure that can be used to select the design variables of SRM by using

probabilistic fracture mechanics and cost or weight considerations.

Method of Approach
As discussed in reference 1, careful NDI techniques can detect

initial cracks greater than the surface length Of(b = 0.1 inch and surface
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depth of a = 0.5 Co with 100% success. It has been claimed that cracks
corresponding to surface length cy = 0.1 inch can be identified 100% of
the the. If the corresponding maximum depth is 0.05 inch’ there is no.
possibility of any initial cracks of depth larger than 0.05 inch. Such
an initial crack depth distribution can be analytically represented2 by
Johnson S, distribution. The density function for the probabilistic

b

model is written as follows

2
) - A oo _;{Hm _____)} ,
a_ o Vory (ao - e)(x - a + €) 2 A - a, + ¢ ‘

esa s¢€ +X , n>0 , —®w<y<w , A>0 , —-=<g<owo; (1)

The four parameters of the distribution areq, X, € and v.

This probability distribution for initial crack depth changes after
each mission, proof test and the material removal from the wall thickness.
The change in distribution after each mission and proof test is due to
the crack growth resulting from the applied stresses. This crack growth
also depends on the lengths of the crack that are already present and
the material properties that are responsible for the crack growth. 1In
this analysis, the applied stresses and material properties are assumed to
be known deterministically. 1If the initial crack length were also known
deterministically the crack length after each use can be determined from

. s . 4 . . 5
equations such as Paris' equation Foreman's equation or Collipriests

b J
equations. Because initial crack lengths are not known deterministically,

crack length after each use of the vehicle is again another probabilis-

tic distribution that has to be determined.



The cumulative density function for crack length after 'n' uses is.
denoted by F(an). This represents the probability that a LA af:ter n
uses. Each use is defined as one flight, slap down, proof test and
material removal. In this analysis ''slap down' effects have not been
considered. The crack growth due to "slap down" effects can be considered
in a similar way. Also, crack growth due to time related effects such as
stress corrosion have also been neglected.

1f F(an) is known the probability distribution for the stress in-
tensity factor (K) can be obtained from the knowledge of the applied
stresses. The probability distribution F(Kh) for stress intensity factor
can be used to estimaté the probability failure (Pf) which is the pro-
bability of stress intensity factor Kn greater than or equal to the criti-
cal stress intensoty factor during the projected design life of the
structure. The critical stress intensity factor is denoted by K°. In
this analysis, stresses and the material propefties are assumed to be
known deterministically. However:; the applied stress changes after each
use due to material removal, Therefore, the probability of failure can
be expressed as the probability of a > a®. 1In this expression a® is |
the critical crack depth that can be obtained from the critical stress
intensity factor and the applied stress. This relationship between the

stress intensity and the applied stress is discussed in the next sectiom.

Stress Intensity Factor
For the analysis of the stress intensity factor in the membrane,
an infinite plate model with elliptical surface flaws that are oriented

perpendicular to the applied stress has been assumed. The relationship
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between the stress intensity, the applied temnsile stress and crack depth

is given by

K = /1.2 1o°a 2)
a {2}
where
o {2} =% - 0.212 -g—:;z (3)

In this equation, gY is the yield stress and 9 is a function of
the ratio of crack depth to crack length (a/c). Variation ;SLfdth (a/c)
is given in reference 1.

Because the crack depth (a) is a random variable the stress intensity
factor K is also a random variable. 1In geﬁeral, both crack depth a and
crack length ¢ are random variables and theré is a need for a joint dis-
tribution for a and c¢c. 1In this analysis, only the crack depth is con-
sidered as the random variable. It is also assumed that the probabiiity
distribution for crack depth 'a' is known initially and is given by a
Johnson Sb distribution. The density function for the distribu;ion is
given in equation (l1). This probability distribution for crack depth
changes with use. The next step will be to determine the change and

the new probability distribution after each flight and proof test.

Probability Distributions for Crack Depth After Use
The following symbols are used to properly account for the changes

in probability distributions.



f(ao): Probability density function for the initial crack depth

_F(ao)q Cumulative distribution function for initial crack depth

F(aop): Cumulative distribution function for_initial crack depth
after the first proof test:

F(a ): cumulative distribution function after N flights and (N+1)
n

tests

F(anp)- Cumulative distribution function after N flights and N proof

proof tests.

F(an): Cumulatife distribution function after material removal from

the_wall thickness.

Similarly, density functions are denoted by lower case 'f'. As
discussed before, 'slap down' effects are not considered in the analysis
but can be included by following a simila procedure.

The rate at which crack depth increases is assumed to be given by

Paris' equation. Then

da _ n
i, ¢ K

where C and n are empirical constants, Alternately, the rate of crack
growth can be assumed to be given by Foreman's equation of Collipriest's
equation if they are found to represent the situation more accurately.

For example, Collipriest's equation can be written as follows:

n K (L -R) + 4n AK
c o

n Kc - in AK n AK -

ga _ 2
in exp | n > arc tan h o Kc(l S —— Ko
2
n Kc + 2n Ko
+ 2nic exp 5 n (4)

where n is an empirical constant. These equations can be used to obtain
6



crack depth after N+l uses if the crack depth after N uses and N proof

tests are known deterministically, i.e.,

ave1 T A tayp! . (5)

Similarly, crack depth after the proof test can be determined from equation
(3) or (4) if the crack depth before the proof test is known determinis-

tically, i.e.,

a a a

e~ Zwe LA : -(®
These functions represented by equations (5) or (6) can be determined
analytically or in the form of quadratures from equation (3) or (4).

From equation (5), can: be obtained for every known value of aNP'

N1
Similarly, aNP can be obtained for every known value of aN from equation
(6). Howaver, both aNP and aN are random variables in the present

analysis. 1In this case equation (5) can be used to obtain the proba-

bility distribution for a

atl if the probability distribution for anp is

known by using the principle of transformation of random variables. It
should be noted that all equations similar to (5) or (6) involving crack
depths are increasing functions. This property is useful iq transforming
the random variables,

For example, the probability density function for a can be

ntl

written as follows

da
1| =2 (7)

dan+l

f(an+l) - f[a‘n+l{anp



similarly
da

- _n
f(anp) = f[anp{an}] danp (8)

Equations (7) and (8) can be written for every value of n from
zero to the projected number of uses.

Details of obtaining these equations for the membrane of the SRM
with the expression for stress intensity given by equation (2) and Paris'
equation for crack growth is discussed in Appendix I.

The next step is to obtain a tool for change of probability distri-

bution due to the material removal from the wall thickness.

Material Removal and the Change of Probability Distribution
Due to material removal after each use the effective crack depth

is reduced by ‘At'. Thus new crack depth is

(9)

It is assumed that A€ is a constant. Thus, by using the principles

of transformation of random variables (2), the probability density func-

tion for an can be written as follows.

(10)

p(a ) = £(a_ +at)
In this equation, p(én) represents the density function for En_and f

represents the functional form of the probability density function for

a ..
n



Probability of Failure

By following the method discussed in the prece&ﬁng two sections,
probability density function for crack depth can be obtained after every
flight, proof test and material removal. From the densi;f function,
cumulative probabilities can.be obtained. by integration. Integration
.after the transformation of variables as discussed in equations (7),

{8) and (10) needs the determination of appropriate limits of integra-
tion consistent with the transformation of variables. This is also
discussed in the Appendix I. 1If F(an) represents the CDF after n flights
and Ilpréof tests the probability of failure is given by the probability
of anZ_ ac.

It is to be noted that the probability of failure changes with
different selections of the initial wall thickness t, increased loading
due to proof test, the material removed At and the number of designated
missions. The increased loading due to proof tests is denoted by a factor
K . A cost function or a weight function can be formulated from this
knowledge of probability of failure and other related unit-cost or
weight. Such a cost or weight function depends on t, KP, At'and number
of missions N. It is possible to select these design variables by
minimizing the cost or weight function subject to appropriate reliability
bounds. The effect of NDI is indirectly related to initial flaw distri-
bution. Additional NDI‘effects such as the rejection of structures are
not considered in the analysis. However, they can be included as cost

units related to the probability of failure. A numerical example is
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illustrated in the next section to illustrate the developments of the

report.

Numerical Example and the Computer Program

For the numerical example, it is assumedlthat the 'Johnson Sb'
distribution for the initial crack depth is such that the minimum crack
depth is zero and the maximum crack depth is b.l inch. Different possible
ratios (a/c) are considered. Paris' equation for crack growth is assumed
with'.c = 0.847 x 10-18 and exponent equal to 3.0. The variation of Qz
with (a/c) is approximated by a quédratic relation.

The primary objective of reusing the SRM case is to reduce the
cost of operation of the shuttle. However, as the number of uses (or
cycles) is increased probability of failure increases because of large
crack depths associated with more use. The probability of failure also
increases with higher proof factors because of higher stresses. Thus,
smaller number of cycles and small proof factors, result in higher
reliability. However, small number of cycles increase the cost of the SRM
case because it has to be replaced after relatively smaller number of uses.
Then the total cost function consists of (a) the cost due to number of

uses and proof factor and (b) the expected cost of failure, i.e.,

c = ¢(N,k®) + c.p

total 3°f

In the equationC(N,Kp) is the cost due to number of uses N, and
proof factor Kp. The cost of failure of SRM case is denoted byC3 and

the probability of failure by Pf. The cost C(N,Kp) can be expressed as

10



c(v,kP) = clua + cz(Kp)b

It is to be noted that the expression is only for the purpgée of
illustration in this report and can be changed to reflect the figures
more accurately.

The power 'a' is negative to reflect the fact that the effective
investment cost is lower if more number of uses can be obtained from the
same vehicle, Similarly tﬁe power 'b' is also negative. This is to
reflect the fact that the capability of vehicle to withstand higher proof
load usually indicates lhrger available margin of safety and increased
confidence in the success of the next mission. This also includes intan-
gible cost due to confidence. It is to be noted that t and'pt' are not
varried in the numerical example. Therefore, there is no cost associated
directly with t or At,.

Initcial thickness of the case is assumed to be 0,686 ingh and it
is assumed that 1% of the thickness is reduced after each use, The flight
loading is assumed to be 936 psi. For the purposes of the illustrative
example, the problem posed is to select the number of use cycles and
proof factor for minimum expected cost. A veliability restraint can be
imposed. However, the numerical example has not been considered such a
restraint. Arbitrarily, the following values have been used for Cl’ C2

.0

= ¢, = 1000.00 units, ¢, = 180 units, a = -0.3 and b =

and C 2

3 %37 %
have been used.
The general procedure can be summarized in the following steps.

A computer program has been written to carry out the needed computations.

11



1. Obtain the parameters of the Johnson Sb distribution for the
initial flaw size.
2. Obtain the stress in the membrane from the known geometry of

the case and wall thickness
c = kP2

In the equation Kp is the proof stress factor. During flight
KP is equal torone. Pressure P is the MEOP pressure and R
is the radius of the SRM case equal to 72.5 inches.

3. Obtain the new CDF and density function for the ctack depth
after the proof test. A value of K’ close 1.0 is assumed to
start the calculation.

4, Obtain the new CDF for the crack depth during the flight
following the proof test.

5. Estimate the probability of failure.

~ 6. Compute the cost function parameters.

7. Obtain the new CDF after the material removal.

8. Repeat steps 2 to 7 for the new thickness and the next mission
until the total number of missions are complete.

9. Change ' At', t, > N and repeat the calculations as necessary.

10. Select the design variables for the minimum value of the ob-
jective function subject to reliability constraints.

A computer program has been written to carry out these steps, Only

N is varied in step number 9. The program is listed in Appendix II.

12



Figure 1 illustrates the variation of cost with number of cycles
and proof factor in the range 1.02 to 1.20. From the assumed arb':".trary
cost figures minimum expected cost occurs for 16 cycles and proqf factor
of 1.12. The corresponding reliability is only 0.9. Lower proof _fa.ctor
need to be used for higher reliability. In the numerical example pre-

sented in this report, t and At have not been varied,

13



Conclusions and Recommendations

This report has demonstrated that the reliability analysis based on
probabilistic fracture mechanics can be used to optimize the selection of
the design variables of the SRM case. In particular, basic design
variables such as the thickness and projected design life as well as the
fracture control variables such as the proof factor and material erosion
can be included. Accuracy in estimation of the initial flaw size distri-
bution is reflected in the assessment of the risks involved in the design.
By knowing the risks involved in the design, weight and cost can be
reduced from those obtained by deterministic analysis and use of arbitrary
safety margins.

This report is only a first step in the development of procedures
based probabilistic fracture mechanics. Additional work that is necessary
can be listed as follows:

1. A more accurate analysis can be obtained by considering the’
joint distribution for the crack depth and crack length alohg
the surface.

2. Accurate methods of estimating the probability distribu-
tion for the initial flaw size distribution should be developed.

3. 1In particular, effects of slap down and time dependent crack
growth including stress corrosion should be considered in the
SRM analysis.

4. Uncertainties in external loads and material properties should

be considered.

14



Accuracy of the different models for crack growth (in the point
of view of probabilistic fracture mechanics) should be evaluated.
Alternate fracture control plans and more accurate stress inten-
sity measures based on cylindrical geometry can be considered.
Cost of NDI efforts in relation to the cost that will be
incurred by additional safety factor should be evaluated in

the point of view of improved reliability.
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APPENDIX I

Estimation of the new CDF of crack depth after use from a

knowladge of the old CDF and probability density before use.
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Crack Growth Rate

The rate at which the crack depth increases is given by Paris

equation as follows.

16

%% = ¢(AK)" = 0.847(AK)™ x 10~

For subsequent convenience in algebra, the value of 'm' is taken to be

3.0. The suggested value from current state of art is 2.48 (C = 0.847

X 10-18). Now substituting for AR

da _ a

4 a a2
C5 + Cz(-c-:') + C3(‘E')

da a i

fa _¢
dN 6} . a a,2

Cs + €, () + €5
where C, = 0.847 x (04)3 x 10718

Integration of (g%

da it follows that

Separating the variables a and N in aN
1.5

- 2
c. +¢, 3 +c.®

ay o L |57 %% 3% da
C a

=)}

17



Integrating both sides between state (1) and state (2)

‘ . L, L5
a -
1 2 G5 +C () +Cy(T)
[N] = f - — 1.5 da
6 a1 (a)

In order to evaluate the integral on the right hand side, it is found
necessary to expand the numerator of the integrant binomially .

Now‘consider the numerator of the integrand with C5 - 1. Neglecting
terms of higher order than (%)3,.it follows that

1.5
a a2
1+ CZ(Z) + C3(€) z

a . a2
=1.0+ 1.5 CZCE)'+ 1.5 C3 + 1:5(0.25)E (c)

- 0.25(0.5)% ¢, _%(%)3

+ ;‘1.5(0.5) C,Cq
Letting
P, = % 1.5 ¢,
P = — ’_.1.5 C., + 1.5(0.25) C 2( '
2 2 3 2 !
and
é3 - :% ‘31.5(0.5) C,Cy - €0.25)2 023£

it follows that

18



a a.2) 2 3
.1+cz(c)+03 (E) —1.0+P1a+.P2a +P3a.
Substituting in the integral
N
2 P P
2.1 -0.5 1 0.5 *2
[N:‘ - C = 0.5 (a') + 0. (a) + 1.5 (a)
N
1
29
3 P3 (a>2.5
2.5
%1
Solution of a1 as a function of a2
Substituting the limits
1.5 2 2
N _ -0.5 0.5  27?,(a) + =P, (a,)"
C6(}«2 Nl) = -Z(az) + 2 Pl(az) + 3 2 72 5 3V2

5 2.5

-0. 0.5 2 1.5 2
+ 2(ay) - 2B(a)) 7T -3 P,(a) 7T - 5 Pylay)

Rearranging and neglecting terms of order higher than three, it reduces

to the following

(al)3 + P(al)2 +qa, +r =20

where

19



_ . 2
q = 8., .8, [8 2, + (c;)"]
3712 573

and

8 8 '
[.3 P35 Pa]

. . . . \1 .
Now, the three roots of this cubic equation, (al) are given by the

following [CRC tables 17th edition.P. 105]

a(2)__A+B_'|-_A—B_._ _Ek
I 2 2 V-3 73
2 (3 _ _A+B _A-B _P
1 2 2 V-3 T3

where

]
H
(e
~~
W

)
1
Ly

-

1,..3
= — - P
b 27(2P 9Pq + 27r)

20



Transformation

Probability density of a, is given by

2
dal .
£f (@) =-—=£f (a,)
.32 2 da2 a1 1
CDF of a2 is then _
2 24 (2,) )
J £, (a,) da, = I £ (a,) da
a 2 0 1
1
a.(a,)
1Y2
= [Falcal)]
0
where F

al(al) is the CDF of Johnson SB'distribution.

Now, it is needed to obtain a, as a function of a No. of

1 2?

cycles etec. This can be done by solving the polynomial equation

9° Nl and Nzas

constants. The infinite degree polynomial equation is truncated at

obtained previously in terms of 2y and treating a

the 3rd degree for convenience.
Of the three roots only one will be the real roob because of
the physical nature of the problem, say Ql(az)

Then, substituting in the expression for the CDF of a

2
A
3, (@ay)
Fa (az) - j fa (al) d(a'l>
2 1
0
or if the CDF of a, is known,
1
1; (a.))
1Y2
F, (a,) = [Fa(al)]
2 0

21



Thus F p(az) is a function of the parameters of the initial flaw
a .
2
distribution i.e. A , €, ¥ and M, the proof test factor Kp and

the number of uses (N2 - Nl).
The effect of each of these parameters can be studied by calcu-

lating F ,(az) for various cases, by means of a computer.
a
2 . )

Parabolic Fit to ¢2(%)

a
Consider tha range ifS(E? <1.0. 1In this range it is attempted

a
to fit a parabolic curve for ¢ZCZ).suCh as follows.

2
2y _ 2y 2

In order to determine the three constants Cl’ C2 and C3 three points

are considered on the given curve.

2 2.2, _

(1)2—0 (D(c)—l.o» )
(i) & = 0.5 ),¢2(-2-> - 1.5
(i) &) = 1.0 0°E) = 2.5

Substituting the values for point (i),

C1 = 1.0

Substituting the values for point (ii)

1.0 + CZ(O.S) + C3(O.25) =1.5

or

202 + C3 =2.0

22



Substituting the values for point (iii)
1.0 + C2 + C3 =2.5

or

Solving equations (2) and (3) simultaneously

C2 = 0.5

and C

3 1.0

Thus the chosen parabolic fit is as follows
2.,a a a 2
—_ = —_— =
p (c) _1.0 + 0.5(c) + \c)

Limits of Integration for the CDF of ’az"

By hypothesis, the initial flas 'a.' has a Johnson - SB distri-

1

bution. Also, there is a functional relationship between the initial

a after N cycles. This

a 2

1 and the subsequent flaw size

flaw size

' a random variable because 'a is a random

4y 1

relationship renders

variable by hypothesis. Having known the range space of 'a,' the range

1
space of 'az‘ can be derived from the functional relationship between
'al' and 'a2'. Thus, if the lower limit of 'al' is zero, it follows
from the functional relationship between 'a. and ‘a,' that the lower

1 2

‘a.' is a_. the

limit of a, is also zero. Next, if the upper limit of 1 1

2

corresponding upper limit for 'a,'

relation between a; and a,, as a function of the number of cycles

N = Nz - Nl'

23

a, can be obtained by solving the cubic



APPENDIX II

24



76708447,

th

FIN 4.6+420

=1

OPT

T4/74

2AM MAIN

Zh OOt
e <t : Ol e}

DS U Y et

X XX e Dl
o )
: QOQZ e~ IO 42 !
A NTHWULOHFLIZTMNHARESL M IUSE IN-T 4 NE ) S ()
O —HOXEZT IOV » }

NWLSnDUKAROONOFFOOn. TTREO® THOU FO* I i vROUM T OO -4 VIO 4 O
Wil ee g eIl

;%

)

T+ QO Z<C
+ o0 O =

<% Q.o DVWIN

Lz g

e TII=HOU0 v
L% —WDO00FLIX

cooo.

~TESTZAND ‘ONE USE, -

$
e
-
Q.
[2
a. -
Wi
=z .
=g
W, oo
= o
; 5 (LS -~
2D 4 =z ¥
=L o w0
o} il AR
e I SR I L o
"> 4 ek
B 72 Eaion el 1Q 1o b :
L et 4 Q [0 & 0 Sy .
;Eﬁ%b. : ¥ Q.
B T T+ w <% QA - i
< O - CM.A :
CETL e 10 : e
=X N2 = -~ Fl i} v ST
R AN W RW._H.. T 0. -
Y] _ - N RN - He = 3
< <t 1wy S e * | { -
R 131 x I W DN D* W 3 =t L% .« oo
< I = O%* (e~ o0 N O T [ A o¥ - EE
wl il *NOET L Lk b Y S lh 1oV ]
- ¥3 W ¥ LRI % 23 g -~ el NN
< < e o I Lf o d etk b o~ i
O ax ] Wid DW=l 4 (D . Rt B .2 B LoV T
= Lo O XTI OOV INA O ) b 1T Fo2 o - -
L ew W WO O U DN o T O . e ek e
3. X T = Z% g 2TO* INOTOOS ¢ - R 10 JERERE = TN S S
<< N e bt oD%k (O it () el tDO % e SR & T 3
X S SOOI XL |~ T NN P KN SR S N RN
~ N P AT TN Ak Dt ZION N~ 2 NI | ity Tl
= TR O IO OO0 T * O - O Qi & Newe
== s H H DNl ok F0D e ik DD of TN CNQOD % %
TN R AANZ T SN B OO = OO DO B =t ci0U* * MO0
Gt Fit e = e e NINR DT e OINVT e w3 =N O g

O OO OIS —% L a0~ LIIPCIhO~% LU P EFUIR v e R F
e O U A Ll b= (O (/3 N il e () DO TN AL D
WSO @ oTloe | (T B jollels : F & 0 o) o o e—wi)io =

LR pi==bo b =P B LL L2 daVT V]

- =

LAMHEE | 2 o~ O it O o Pt O e 4O F L R I I 1 W0 D

=Lb.od

Ol b e U N T =~ OO QOO QA TN
AaAA ; i o s ; c

: o | ! ! ST
i coe : o o o1 ; i i :
e L R - o)
A Ciea @ o, e | ; ;
P ! : ’ : i H ' i
P o : | . i : i
P 25 - j i i



76708717,

FTN G4e6+420

=1

oPT

T4/74

4 MAIN

s e e
e ST
i 7p02E e N
Bad =1 F
Pk N et
NN

-_D”“'__P:LH(CT*CN)

L AUt

ol

0)))¥*(120/3.0);

o _ RS

* - et o

* . jo ® = NG

(4 ¥ S DO AR 7, L % 5N

[ Tdh e e o N Qe
e ~— Vo~ w0 @ @D | )N
......... OIANNT S o A OO

=7
m
~
o
~t
~
>
*
-——
DU -yl
: e |
o~
»
%
o
(o]
e d
-+
—
o ]

W et et e ) X ped
_.”...33..?”..1 N\ w * oM
. :

U - N s | 3O~

MO DD T s W o ([T O = e (AT O% A
N a2 & s A Aw—r NZNZNZAAw = NZNZUNZ + =i ¥ =i
+F AN~ Z OO MO D~ Z O O O AT+ =23
NNNNN O QUNTONON O QNN QNO%E O

-—p
0 W Z=d)

XPY-{4,0%Q))) /2.0

N N T

L% oNDODNVNDUNN"F QXNA~CO % * % & & 4 I X% % b} * 3 I IF WSO -HN+ DI

D aaie v oN—=MIN=O%® * +% i1 I ILOIXYX UK XIZTOIXEEX XL NI
C et F BN N D s PNAD L~ i) I XXX LI R - -

TN = .
SR NN Hs~ a1 H e

(4 43V BV

e NN~ H vt o
KL A NEE RITE-SoT- &4

N~ e e~ I Qb IR VI ) s T

MU N WM I R DN =T

M I HN HE D AUIM I ADIO AN Y T X Y-t O T A Y el T It Y O U

CNNONNONOX <N

i

i

_
-
1

i }

i

o

i
t
1

1

i

1

_ i

- oo |
; H

'

26

NNONLIOOO X I IIIITOX I~ CONCND L H -NNO T T
R H i : ! . M . . : L i

)

114



\SA-Langley, 1977

176708787,

FTN ﬁ,ey4é

t

B

FREEPFRCRRNIRY

FEEY¥Y

5) :
FEFFRRFFF TP YRR RN

"FUNCTION =

* e
= o ‘h‘ I
- ) 723
" -l . Q.
e & R
St ! O
" ot <t
- [I7] b
g 24 o
- B |
< U -
. b pep b o *
T o
L *
- O *
b *
. b i - %
x xI . »
- e i e # -
T : - &
f UYL wvr No#
teh. tei- TN #
b - [
<« A . »
o i 3 . %
= jos 3 — - %
aa a- - *
el =4 = A
S <X < %~ O
(420 S R QOF%
el 0T | +O%*
=z Z MO D~
T O O gL d~~—es
P s e e — et -
~ — Y gL =N\ e R
K o [ Tk e ) NIk al0% (O e O sl
~ W OEINGC=-H I N Z2O~F WO s Z00-ID0D
TN DT O e Db (D s O T 22
D O AL oI Xt W DO | W
LN Uty e e =% (D il U H e S b Ol
CHIE N HD Yt O OO ZZZ00
; TACH NI MN O I YO T OwiNm= Y OOOCkT
D ZOSINNNNLE OL QT —OOOCNOTLOOQONW
H 1 M . : H B -
=z ; : : ’ . |
- AR~ Y o} oo |
<< P o 'ow vdoogy |
T e : [= Ot . Co- —oooh
S N 2 R T PO Ve : ANt |
= : : : t
<< : o
N.‘ i

2

7

|




